If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+5a-10=0
a = 3; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·3·(-10)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{145}}{2*3}=\frac{-5-\sqrt{145}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{145}}{2*3}=\frac{-5+\sqrt{145}}{6} $
| 5(x+1)^¼=10 | | 4(2n−1)+5=2n−2+3(2n+1) | | X*2,31x=110 | | 9=6x=5 | | 12x-15x=3x | | ,12x+3=21 | | 2x+2x=5x | | 220x2323÷414= | | 4/m-2=2/5 | | a×11-21=254 | | N=53n+1 | | -⅓x+2=11 | | 6x^{2}-60x+152=0 | | 26+x=2x | | 16/x-3=19 | | 30+18x=24x | | 0.75*x=-0.5 | | 5^x+2=4^3x | | 7m-15=5m+5 | | (10x)+(6x+9)=105 | | (10x)+(6x+9)=75 | | 81^2/3=x | | 2x=114° | | 4x2−23x+15=0 | | p/18–54=0 | | 4x+22=6(x-1) | | −2a=8 | | 48/40=6/y | | 48/40=6/z | | Y+3×y=84 | | (3x+2)+(9x+6)=70 | | y-91=45/4(4-0) |